Exos sur Activité: documents nécessaires: classification périodique (dispo sur livre ou sur internet).

1. Masse molaire atomique de chacune des espèces chimiques figurant dans le tableau ci-dessous :

Espèce chimique	Plomb	Cuivre	Sodium	Chlore	Soufre	Carbone	Hydrogène	Oxygène	Calcium
Masse molaire (g.mol ⁻¹)	207,2	63,5	23	35,5	32,1	12	1	16	40,1

2. Calculer la masse molaire des espèces figurant dans le tableau ci-dessous :

Échantillon	Chlorure de sodium	Carbonate de Calcium	Sucre (saccharose)
	NaCl	CaCO ₃	$C_{12}H_{22}O_{11}$
Masse molaire	M(NaCl) = M(Na) + M(Cl)	$M(CaCO_3) = M(Ca) +$	$M(C_{12}H_{22}O_{11}) = 12M(C) +$
(g.mol ⁻¹)	= 23 + 35,5 = 58,5	M(C) + 3M(O)	22M (H) + 11 M (O)
		=40,1+12+(3*16)=101,1	= (12*12) +22 + (11*16) = 342

3 . Comment peut-on mesurer la masse volumique ρ et 1a densité **d** d'une espèce chimique (solide ou liquide) par rapport à l'eau ? (éventuellement donner les définitions respectives).

Mesure du volume de l'espèce (choix pour un liquide : utilisation d'un éprouvette ou mesure à l'aide d'un liquide pour un solide non soluble) + mesure de la masse m correspondant de l'échantillon (tarage de la balance pour supprimer masse éprouvette).

- 4. Donner la relation qui lie la quantité de matière \mathbf{n} (mol) d'une espèce chimique contenue dans un échantillon de masse \mathbf{m} (g), à la masse molaire \mathbf{M} (g/mol)? \mathbf{g} / \mathbf{mol} $\mathbf{M} = \mathbf{m}$ / \mathbf{n} \mathbf{g} mol
- 5 . Parmi la verrerie suivante : classer les contenants suivants par précision croissante : bécher , éprouvette de 50 mL , pipette graduée , verre à pied ; verre à pied , bécher , éprouvette de 50 mL , pipette graduée

Manipulation : comment peut-on mesurer une quantité de matière ?

Matériel : verrerie citée plus haut et balance. Mode opératoire

- 1. Déterminer une quantité de matière présente dans un morceau de sucre (saccharose) de masse = 5,00 g mesurée à l'aide d'une balance électronique. Attention à bien faire écrire le nombre de chiffres significatifs pour la masse selon la précision de la balance et à préciser l'unité.
- Calculer la quantité de matière correspondante (en mol).

Recherche sur internet de la formule brute, de la masse molaire, relation, calcul, résultat, unité.

2. Comment préparer une quantité de matière : Etat physique de l'espèce pure : en magenta

Solide (NaCl) : Préparer 0,10 mol de chlorure de sodium, en justifiant la démarche.

Liquide (eau): A vous de jouer: préparer la quantité de matière n (mol) d'eau parmi les valeurs suivantes: 0,5 mol; 1 mol; 2,0 mol; 3,0 mol.

Selon la précision demandée, choisir la verrerie appropriée (burette, éprouvette...)

- Expliquer les étapes de cette préparation.

Donnée : masse volumique de l'eau : $\rho_{eau} = 1,00 \text{ kg.L}^{-1}$

Les exercices qui suivent sont à commencer et à finir pour la fois suivante.

Remarque : savoir (à partir des noms et unités) retrouver les 3 relations qui permettront de résoudre tous les problèmes de détermination de quantité de matière dans les questions de chimie :

$$g / mol$$
 $M = m / n$

g/mL $\rho = m / v$

L / mol Vm = v / n

 $\begin{array}{ccc}
\mathbf{I} = \mathbf{V} / \mathbf{n} \\
\mathbf{L} & \mathbf{mol}
\end{array}$

Autour des grandeurs : masse molaire moléculaire, M et volume molaire, V_m (à T et p)

1. Solides

1. Solides					
Espèce chimique Nom		Glace Vitamine C		Acide stéarique	
			(acide ascorbique)	(bougies)	
	Formule brute	H ₂ O	C ₆ H ₈ O ₆	$C_{18}H_{36}O_2$	
Masse molaire moléculaire (g.mol ⁻¹)		18	(6*12)+8+(16*6)= 176	(18*12)+36+(16*2) = 284	
Masse volumique (g.mL ⁻¹)		0,917	1,65	0,941	
Densité		0,917	1,65	0,941	
Masse (g)		1,35*18 = 24,3	500 mg = 0,500 g	120*0,941=113	
Quantité de 1	matière (mol)	1,35	0,5/176=2,84.10-3	113/284=0,397	
Volum	ne (mL)	24,3/0,917 = 26,5	0,50/1,65 = 0,303	120	

2. Liquides (T = 20 °C, P = 1013 hPa).

Espèce chimique	Nom	Ethanol ou alcool	Octane (constituant de	Styrène (conduit au polystyrène qui est
	Formule brute	éthylique C ₂ H ₆ O	l'essence) C ₈ H ₁₈	une matière plastique) C ₈ H ₈
Masse molaire m	Masse molaire moléculaire (g.mol ⁻¹)		(8*12) + 18=114	(8*12) + 8 = 104
Masse volun	Masse volumique à (g.cm ⁻³)		0,703	0,906
De	Densité		0,703	0,906
Mas	Masse (g)		3,2*114= 364,8	28 g
Quantité de	Quantité de matière (mol)		3,2	28/104 = 0,27
Volur	me (mL)	43,2	364,8/0,703= 519	28/0,906=31

3 . Gaz : écrire la relation entre n(gaz), V(gaz) et Vm(gaz) : n(gaz) = V(gaz) / Vm(gaz)

Espèce chimique	Nom	Méthane (gaz de ville)	Dioxyde de carbone	Butane
	Formule brute	CH ₄	CO ₂	C_4H_{10}
Masse molaire moléculaire (g.mol ⁻¹)		12+4=16	12 + (2*16) =44	(4*12) + 10 = 58
Volume molaire	$(L.mol^{-1})$ à T et p	22,42 0°C; 1,013 bar	2,447 25°C; 10,13 bar	24,47 25°C; 1,013 bar
Masse (g)		73 g	1,397 * 44 = 61,5	58*2,75.10 ⁻³ = 0,159
Volume (mL)		4,6*22420=103132	3420	24470*2,75.10 ⁻³ = 67,3
Quantité de matière (mol)		73/16=4,6	3,420/2,447=1,397	2,75.10-3